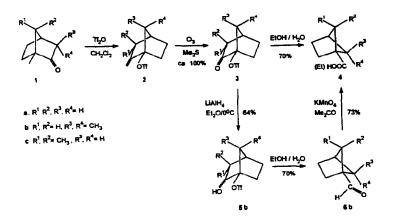
Enantiospecific Synthesis of Substituted

Bicyclo[2.1.1]hexane-1-carboxylic Acids and Esters

A. García Martínez^{*}^a, E. Teso Vilar^b, J. Osío Barcina^a, M. E. Rodriguez Herrero^a,

S. de la Moya Cerero^a, M. Hanack^c, L. R. Subramanian^c


(Received in UK 13 September 1993)

^aDepartamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria, 28040 Madrid, Spain; ^bDepartamento de Química Orgánica y Biología, Facultad de Ciencias Químicas, UNED, Ciudad Universitaria, 28040 Madrid, Spain; ^cInstitut für Organische Chemie der Universität, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.

Abstract: The base promoted ring contraction of the readily accessible homochiral 2-oxo-1-norbornyl triflates 3 in 60% ethanol takes place with formation of bicyclo[2.1.1]hexane (4a), (+)- or (-)-7,7-dimethyl-bicyclo[2.1.1]hexan-1-carboxylic acids (4c or 4b) and the corresponding ethyl esters in good yields.

Bridgehead substituted bicyclo[2.1.1]hexanes are of particular interest because of the noticeable effects of bond angle deformation on their reactivity^{1,2}. The most convenient precursors for this type of compounds are the corresponding carboxylic acids 4, which are readily converted to other functional groups, e.g. halogen, amine and hydroxyl³. However, until now the only available routes for the synthesis of the acids 4 are very complicated. Thus, the acid 4a was first obtained by a twelve-steps synthesis from norbornane⁴. Modern synthesis of 4a³ and 4b + 4c [(\pm)-4b] are six-step processes from the Diels-Alder adduct of cyclopentadiene and acrylic or 3,3-dimethylacrylic acid^{3,5}. The last step of these synthesis is the base-promoted ring contraction of (\pm)-1-bromo-2-norbornanone or (\pm)-1-bromo-7,7-dimethyl-2-norbornanone which give high yield of the acid 4c but very low yield (ca. 4%) of the acid (\pm)-4b under similar conditions^{3,5}.

In continuation of our work on the enantiospecific synthesis of homochiral intermediates from naturally occurring 2-norbornanones, we report here on the base-promoted ring contraction of 2-oxo-1norbornyl triflates 3^6 (EtOH/H₂O 60:40, Et₃N, 130°C, 120h) to afford a mixture of products 4, as a mixture of the acid and the ester in 51:36 ratio in high overall yield (4a: 86%, 4b: 20%, 4c: 80%). Higher yields of 4b can be obtained from the solvolysis of the alcohol 5b, prepared by reduction of 3b. This avoids the steric hindrance in the solvolysis³ of 3b, using as substrate the alcohol 5b, prepared by reduction of 3b. The acid 4b is now obtained by oxidation of the solvolysis product, the aldehyde 6b⁷. Use of strong base for the solvolysis reaction such as sodium hydroxide^{3,5} leads to O-S scission. On the other hand, in the poorly nucleophilic solvent hexafluoroisopropanol, no solvolysis products were detected after two weeks at 140°C.

The pure acids 4^8 were isolated from the reaction mixture by extraction with NaOH and acidification and the pure esters 4^9 by column chromatography on silica gel (pentane/ether = 95:5). The acids can be converted into the esters or vice versa, increasing the yield of the total product to more than 80%. The $[\alpha]_D$ absolute values for 4b and 4c are the same, although these compounds were prepared from different starting materials and agree with those reported in the literature⁷. This facts vouch for the enantiospecificity of our method.

The triflates 3^6 are obtained by ozonolysis of the corresponding 2-methyliden-1-norbornyl triflates 2 in quantitative yield. The triflates 2^{10} are synthesized by reaction of (\pm) -1-methyl-2-norbornanone (1a)(60 %), (+)-camphor (95 %) or (-)-fenchone (78 %) with triflic anhydride and N,N-diisobutyl-2,4-dimethyl-3-pentylamine in CH₂Cl₂ at room temperature¹¹.

In conclusion, our procedure utilizing triflate as the leaving group instead of the bromide^{3,5}, is a very useful approach to the synthesis of bicyclo[2.1.1]hexanes and, together with the solvolysis of 2,3,3-trimethyl-1-norbornyl triflate¹² which takes place also with ring contraction, constitutes the first asymmetric synthesis of optically active bicyclo[2.1.1]hexanes.

References and Notes

1) Wu, Y. D.; Kirmse, W.; Houk, K. N. J. Am. Chem. Soc. **1990**, 112, 4557. 2) Della, E. W.; Head, N. J. J. Org. Chem. **1992**, 57, 2850. 3) Abeywickrema, R. S.; Della, E. W. Org. Prep. Proc. Int. **1980**, 12, 357. 4) Wiberg, K. B.; Lowry, B. R. J. Am. Chem. Soc. **1963**, 85, 3188. 5) Fong, W. C.; Thomas, R.; Scherer, K. V. Tetrahedron Lett. **1971**, 3789. 6) 3b: $[\alpha]_D^{20} = +21.0$ (c= 1.0; MeOH); 3c: $[\alpha]_D^{20} = -12.3$ (c=2.1; MeOH) 7) Ebisu, K.; Batty, L. B.; Higaki, J. M.; Larson, H. D. J. Am. Chem. Soc. **1965**, 87, 1399. 8) 4a(CO₂H): s. lit.⁴ ¹³C-NMR(CDCl₃): $\delta = 180.64, 51.69, 41.66, 36.53, 28.93, 27.37; 4b(CO₂H): s. lit.⁷ ¹³C-NMR(CDCl₃): <math>\delta = 180.64, 51.69, 41.66, 36.53, 28.93, 27.37; 4b(CO₂H): s. lit.⁷ ¹³C-NMR(CDCl₃): <math>\delta = 174.00, 59.97, 53.00, 41.72, 36.44, 29.05, 27.47, 14.17. 4b(CO₂Et): ¹³C-NMR(CDCl₃): <math>\delta = 173.75, 59.70, 55.50, 48.97, 43.65, 38.00, 29.16, 25.89, 19.60, 19.48, 14.46. <math>[\alpha]_D^{20} = -2.3$ (c=1.9; MeOH) 10) 2b: $[\alpha]_D^{20} = +16.5$ (c= 5.3; MeOH) 2c: s. lit.¹¹ 11) Martínez, A. G.; Teso, E.; Osío, J.; Manrique, J.; Rodriguez, E.; Hanack, M.; Subramanian, L. R. Tetrahedron Lett. **1982**, 30, 1503.